Abstract

The scalability of future massively parallel processing (MPP) systems is challenged by high failure rates. Current hard disk drive (HDD) checkpointing results in overhead of 25% or more at the petascale. With a direct correlation between checkpoint frequencies and node counts, novel techniques that can take more frequent checkpoints with minimum overhead are critical to implement a reliable exascale system. In this work, we leverage the upcoming Phase-Change Random Access Memory (PCRAM) technology and propose a hybrid local/global checkpointing mechanism after a thorough analysis of MPP systems failure rates and failure sources.We propose three variants of PCRAM-based hybrid checkpointing schemes, DIMM+HDD, DIMM+DIMM, and 3D+3D, to reduce the checkpoint overhead and offer a smooth transition from the conventional pure HDD checkpoint to the ideal 3D PCRAM mechanism. The proposed pure 3D PCRAM-based mechanism can ultimately take checkpoints with overhead less than 4% on a projected exascale system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.