Abstract

Thin and light vibrators that leverage the inverse piezoelectric effect with a diaphragm mechanism are promising vibrotactile actuators owing to their form factors and high temporal and frequency response. However, generating perceptually sufficient displacement in the low-frequency domain is challenging. This study presents a lever mechanism mounted on a diaphragm vibrator to enhance the vibrotactile intensity of low-frequency vibrotactile stimuli. The lever mechanism is inspired by the tactile contact lens consisting of an array of cylinders held against the skin on a sheet that enhances micro-bump tactile detection. We built an experimental apparatus including our previously developed thin-film diaphragm-type vibrator, which reproduced the common characteristic of piezoelectric vibrators: near-threshold displacement (10 to 20 μm) at low frequency. Experiments demonstrated enhanced vibrotactile intensity at frequencies less than 100 Hz with the lever mechanism. Although the arrangement and material of the mechanism can be improved, our findings can help improve the expressiveness of diaphragm-type vibrators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.