Abstract

The GTN continuous damage model is very popular in academia and industry for structural integrity assessment and ductile fracture simulation. Following Aravas’ influential 1987 paper, Newton’s method has been used widely to solve the GTN equations. However, if the starting point is far from the solution, then Newton’s method can fail to converge. Hybrid methods are preferred in such cases. In this work we translate the GTN equations into a non-linear minimization problem and then apply the Levenberg–Marquardt and Powell’s ‘dogleg’ hybrid methods to solve it. The methods are tested for accuracy and robustness on two simple single finite element models and two 3D models with complex deformation paths. In total nearly 137,000 different GTN problems were solved. We show that the Levenberg–Marquardt method is more robust than Powell’s method. Our results are verified against the Abaqus’ own solver. The superior accuracy of the Levenberg–Marquardt method allows for larger time increments in implicit time integration schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.