Abstract

It is well established that corticotrophin-releasing hormone and vasopressin can induce both synthesis and release of ACTH from the ovine pituitary gland, and that glucocorticoids can inhibit these responses. Changes in the abundance, localization and distribution of pro-opiomelanocortin (POMC) mRNA and prolactin (PRL) mRNA in the ovine fetal pituitary were examined by in situ hybridization following hypoxaemia applied in the presence or absence of concomitant cortisol in late gestation (day 135). Fetuses were distributed amongst four groups; saline-infused/normoxaemic, cortisol-infused/normoxaemic (0.3 mg/h), saline-infused/hypoxaemic and cortisol-infused/hypoxaemic. Hypoxaemia (6 h) was induced by reducing the maternal PaO2, resulting in a 6-8 mmHg decrease in fetal arterial PO2. Fetal infusions were commenced 5 h prior to and maintained throughout the treatment period. Hypoxaemia, which elevated fetal plasma ACTH and cortisol, caused a significant (P < 0.05) increase in POMC mRNA in the pars distalis (PD), but was without effect on POMC mRNA in the pars intermedia (PI). Cortisol infusion attenuated the hypoxaemia-induced increase in POMC mRNA in the PD, but was without effect on non-stimulated steady-state POMC mRNA levels in either the PD or PI. PRL mRNA was only present in the PD and significantly (P < 0.05) increased after cortisol infusion and hypoxaemia. In conclusion (i) POMC and PRL mRNA in the PD are increased following moderate hypoxaemia, (ii) cortisol attenuates changes in POMC mRNA but not PRL mRNA in the PD following hypoxaemia and (iii) cortisol increases PRL mRNA levels in the PD.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call