Abstract
The incidence and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in the Buffalo River Estuary in the Eastern Cape Province of South Africa were assessed in this study. A total of 60 surface water and 19 sediment samples were collected from 5 sites of the estuary over a period of 6 months (December 2015 to May 2016). Extraction of PAHs from the water and sediment samples was achieved by using liquid–liquid and soxhlet extraction methods respectively, followed by column clean up with silica gel and quantification by gas chromatography–flame ionization detection. Individual PAH levels in the water and sediment samples ranged from not detected (ND) to 24.91 μg/L and ND to 7792 μg/kg, respectively. Total concentrations of the PAHs in the water and sediment samples varied as 14.91–206 μg/L and 1107–22,310 μg/kg in that order. Total levels of the contaminants were above the target values in the two matrices and were higher in summer than autumn. Although the noncarcinogenic risk of PAHs estimated in the water column through dermal absorption was very low compared with the target value, the carcinogenic risk determined was high for both adults and children. Similarly, benzo(a)pyrene and dibenzo(a,h)anthracene were found to be of higher carcinogenic and mutagenic risks in the sediments collected from the study area. Diagnostic ratios suggest that the target hydrocarbons are predominantly from pyrolytic sources. It therefore could be inferred that the water body is conspicuously polluted; hence, efforts should be made to control all the activities contributing to such magnitude of pollution at the sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Archives of Environmental Contamination and Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.