Abstract

The tumorigenicity in nude mice of human carcinoma-derived D98AH2 (D98) cells is suppressed when cell hybrids are made by fusing these cells with normal human diploid cells. Selection for hybrids that have segregated chromosomes results in the recovery of tumorigenic segregants. These segregants have all lost at least one copy of chromosome 11 of the diploid cell parent. Earlier we found that the parental D98 cells had detectable levels of mRNA specific for 13 of 21 proto-oncogenes examined. To determine if transregulation of proto-oncogenes by genes of the normal cell occurs in such hybrids, the steady-state levels of mRNA specific to 22 proto-oncogenes in the parental cells were compared with those of nontumorigenic D98 X human diploid hybrids as well as with those of their tumorigenic segregants and with the cells of the resulting tumors. The only chromosome consistently segregated in the latter was chromosome 11 of the diploid cell. fos and ets2 RNA levels and the amount of fos protein were consistently elevated in the segregants compared with amounts in the original hybrids. An unexpected finding was the inverse relationship for myb RNA that was barely detected in the parental D98 cells but was at least 10-fold elevated in hybrids that did not have segregated chromosomes compared with those that did. These patterns were evident in RNAs prepared from both subconfluent and confluent cell cultures. The findings suggest that genes of the normal cell parent can affect proto-oncogene expression. Whether the genes affecting fos, ets2, and myb RNA levels are on chromosome 11 and whether these alterations are causally related to the tumorigenic phenotype of the hybrid remain to be determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call