Abstract

Increasing antibiotic resistance genes in the environment may pose a threat to public health. In this study, tetracycline and sulfonamide resistance genes (Tet-W, Tet-O, and Sul-I) were quantified in 24 manure samples from three farms and 18 biosolids samples from seven different wastewater treatment plants using quantitative polymerase chain reaction methods. Concentrations of Tet-W and Tet-O genes were observed to be significantly higher (p < 0.05) in manure than in biosolids samples. The background soil samples showed significantly lower concentration of the above genes compared with manure and biosolids. Lime-stabilized biosolids showed significantly (p < 0.05) lower concentration of antibiotic resistance genes compared with other biosolids treatment methods. Elevated levels of antibiotic resistance genes (Tet-W, Tet-O, and Sul-I) were observed in the amended soil samples after the land application of manure or biosolids (Site A) monitored for a period of about 4 mo. However, at another site (Site B), no significant increase (p > 0.05) in concentration of antibiotic resistance genes was observed after biosolids application on soil. Even though the concentration of antibiotic resistance genes in manure was statistically higher than that in biosolids, when they were applied on land, the contribution to the soil depended on the background soil concentration and the soil characteristics. Further study of multiple soil samples in various locations is needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call