Abstract
It was previously proposed that plant growth-promoting bacteria that possess 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase could utilize ACC that is present in the exudate of germinating canola seeds. The uptake and cleavage of ACC by these bacteria would lower the level of ACC, and thus ethylene within the plant, and reduce the extent of its inhibition on root elongation. To test part of the above mentioned model, ACC levels were monitored in canola seed tissues and exudate during germination. Lower amounts of ACC were present in the exudate and tissues of seeds treated with the plant growth-promoting bacterium Enterobacter cloacae CAL3, than in control seeds treated with MgSO4. The ACC-related compounds, alpha- and gamma-aminobutyric acids, both known to stimulate ethylene production, were also measured in the canola seed exudate and tissues. Approximately the same levels of alpha-aminobutyric acid were present in the exudates of the bacterium-treated seeds and the control seeds, but the amount of alpha-aminobutyric acid was lower in the tissues of the bacterium-treated seeds than in the control seeds. Smaller quantities of gamma-aminobutyric acid were seen in both the exudate and tissues of the E. cloacae CAL3-treated seeds than in the control seeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.