Abstract

Although some persistent organic pollutants (POPs) were prohibited or limited in use several decades ago, they are still frequently detected in the human body. The purpose of this study was to understand the levels and profiles of POPs in breast milk in China and assess their potential health risks among breastfed infants under six months of age. A literature review focused on China was performed for studies published from 2001 to 2020. The POP levels in breast milk along with other important variables were extracted, and then the average individual POP levels in breast milk were estimated. This review summarises the distribution of traditional and new POPs, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), legacy brominated flame retardants (BFRs), perfluorinated compounds (PFCs), and chlorinated paraffins (CPs) and reported notably high levels of short-chain chlorinated paraffins and 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p’-DDE) in breast milk. Although the levels of traditional POPs generally declined over time, especially p,p’-DDE and beta-hexachlorocyclohexane (β-HCH), women living in coastal areas, urban areas, and southern China still have a high body burden of certain POPs. In the present study, the estimated daily intake (EDI) of POPs through breastfeeding was used to evaluate the health risk for infants by comparing with acceptable levels. The findings suggested that infants born in coastal areas most likely suffered potential health risk from exposure to DDT, and the health risk of hexachlorobenzene (HCB) in infants in most nationwide regions remains a concern. More importantly, the EDI of PCBs for infants exceeds the safe limit on a national scale. Continuous surveillance of PCBs in breast milk is critical to evaluate the potential health effects on humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.