Abstract

Classification of various cognitive and motor tasks using electroencephalogram (EEG) signals is necessary for building Brain Computer Interfaces (BCI) that are noninvasive. However, achieving high classification accuracy in a multi-subject multitask scenario is a challenge. A noticeable reduction in accuracy is observed when the subjects between train and test are mismatched. Drawing a similarity from speaker adaptation approaches in speech, we propose a method to perform subject-wise adaptation of EEG in order to improve the task classification performance. A Common Spatial Pattern (CSP) approach is employed for feature extraction. Gaussian Mixture Model (GMM) based subject-specific models are built for each of the tasks. Maximum a-posterior (MAP) adaptation is performed, and an absolute improvement of 1.22-7.26% is observed in the average accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.