Abstract

Gamma decays were observed in 56Ca and 58Ca following quasi-free one-proton knockout reactions from 57,59Sc beams at ≈200 MeV/nucleon. For 56Ca, a γ ray transition was measured to be 1456(12) keV, while for 58Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the 21+→0gs+ decays, and were compared to results from ab initio and conventional shell-model approaches. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for 21+ level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the 0f5/2 and 0g9/2 orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic 60Ca and potentially drives the dripline of Ca isotopes to 70Ca or even beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call