Abstract

The lens depth of a point has been recently extended to general metric spaces, which is not the case for most depths. It is defined as the probability of being included in the intersection of two random balls centred at two random points X and Y, with the same radius d(X,Y). We prove that, on a separable and complete metric space, the level sets of the empirical lens depth based on an iid sample, converge in the Painlevé-Kuratowski sense, to its population counterpart. We also prove that, restricted to compact sets, the empirical level sets and their boundaries are consistent estimators, in Hausdorff distance, of their population counterparts, and analyse two real-life examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.