Abstract

Topology optimization for structures has been applied to nonlinear structural problems, however conventional topology optimization methods for structures with geometrical nonlinearity encounter difficulties during nonlinear analysis using the FEM (Finite Element Method), due to the use of a mesh. In this study, we propose a new level set-based topology optimization method considering geometrical nonlinearity using a mesh-free particle technique, for optimizing elastic structures that undergo finite deformation. In the proposed method, the MPS (Moving Particle Semi-implicit) method, a particle method, is used for the response analysis, since it does not rely on a mesh for geometrically nonlinear analysis. In this paper, first, a topology optimization problem is formulated based on the level set method and a method for regularizing the optimization problem using the Tikhonov regularization method is explained. The reaction-diffusion equation that updates the level set function is then derived and an optimization algorithm, which uses the FEM to solve the equilibrium equations and the reaction-diffusion equation when updating the level set function, is constructed. Next, the particle interaction model and the treatment of geometrical nonlinearity in the MPS method are shown, and the implementation of combining the level set-based topology optimization and the MPS method is explained. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed method of topology optimization for geometrically nonlinear problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.