Abstract

SummaryLinear buckling constraints are important in structural topology optimization for obtaining designs that can support the required loads without failure. During the optimization process, the critical buckling eigenmode can change; this poses a challenge to gradient‐based optimization and can require the computation of a large number of linear buckling eigenmodes. This is potentially both computationally difficult to achieve and prohibitively expensive. In this paper, we motivate the need for a large number of linear buckling modes and show how several features of the block Jacobi conjugate gradient (BJCG) eigenvalue method, including optimal shift estimates, the reuse of eigenvectors, adaptive eigenvector tolerances and multiple shifts, can be used to efficiently and robustly compute a large number of buckling eigenmodes. This paper also introduces linear buckling constraints for level‐set topology optimization. In our approach, the velocity function is defined as a weighted sum of the shape sensitivities for the objective and constraint functions. The weights are found by solving an optimization sub‐problem to reduce the mass while maintaining feasibility of the buckling constraints. The effectiveness of this approach in combination with the BJCG method is demonstrated using a 3D optimization problem. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.