Abstract

AbstractIn the present paper the dissolution of a binary liquid drop having a miscibility gap and migrating due to thermo‐solutal capillary convection in a cylindrical cavity is studied numerically. The interest in studying this problem is twofold. From a side, in the absence of gravity, capillary migration is one of the main physical mechanisms to set into motion dispersed liquid phases and from the other side, phase equilibria of multi‐component liquid systems, ubiquitous in applications, often exhibit a miscibility gap. The drop capillary migration is due to an imposed temperature gradient between the cavity top and bottom walls. The drop dissolution is due to the fact that initial composition and volume values, and thermal boundary conditions are only compatible with a final single phase equilibrium state. In order to study the drop migration along the cavity and the coupling with dissolution, a previously developed planar two‐dimensional code is extended to treat axis‐symmetric geometries. The code is based on a finite volume formulation. A level‐set technique is used for describing the dynamics of the interface separating the different phases and for mollifying the interface discontinuities between them. The level‐set related tools of redistancing and off‐interface extension are used to enhance code resolution in the critical interface region. Migration speeds and volume variations are determined for different drop radii. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call