Abstract

Artificially designed composite materials consist of microstructures, that exhibit various thermal properties depending on their shapes, such as anisotropic thermal conductivity. One of the representative applications of such composite materials for thermal control is the thermal cloak. This study proposed a topology optimization method based on a level set method for a heat conduction problem to optimally design composite materials that achieve a thermal cloak. The homogenization method was introduced to evaluate its effective thermal conductivity coefficient. Then, we formulated a multiscale topology optimization method for the composite materials in the framework of the homogenization method, where the microstructures were optimized to minimize objective functions defined using the macroscopic temperature field. We presented examples of optimal structures in a two-dimensional problem and discussed the validity of the obtained structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.