Abstract

Endothelial cell apoptosis plays a critical role in the disruption of blood vessels mediated by natural inhibitors of angiogenesis and by anti-vascular drugs. However, the proportion of endothelial cells required to mediate a significant decrease in microvessel density is unknown. A system based on an inducible caspase (iCaspase-9) offers a unique opportunity to address this question. The dimerizer drug AP20187 induces apoptosis of human dermal microvascular endothelial cells stably transduced with iCaspase-9 (HDMEC–iCaspase-9), but not control cells (HDMEC–LXSN). Here, we generated blood vessels containing several HDMEC–iCaspase-9:HDMEC–LXSN ratios, and developed a mathematical modeling involving a system of differential equations to evaluate experimentally inaccessible ratios. A significant decrease in capillary sprouts was observed when at least 17% of the endothelial cells underwent apoptosis in vitro. Exposure to vascular endothelial growth factor (VEGF 165) did not prevent apoptosis of HDMEC–iCaspase-9, but increased the apoptotic requirement for sprout disruption. In vivo experiments showed the requirement of at least 22% apoptotic endothelial cells for a significant decrease in microvascular density. The combined use of biological experimentation with mathematical modeling allowed us to conclude that apoptosis of a relatively small proportion of endothelial cells is sufficient to mediate a significant decrease in microvessel density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call