Abstract
The performance of a biometric system is based primarily on the quality of physical or behavioral biometric used for a robust and an accurate authentication/identification of an individual. To improve the performance and the robustness of the system, multispectral palmprint images were employed to acquire more discriminative information. In this paper, we introduce a novel multispectral recognition method. In this context, we propose the fusion of palmprint and palm vein features to increase the accuracy of the biometric person recognition. The proposed approach is based on statistical study and energy distribution analysis of Finite Ridgelet transform coefficients, involving so low computation complexity. For multispectral palmprint images recognition, we tested the performance of three classifiers: K nearest neighbor (KNN), Support Vector Machine (SVM) and `One-Against-One' multi-class SVM (OAO-SVM) with RBF kernel using 6-folders cross-validation to assess the generalization capability of the proposed biometric system. The validation of our results is performed on multispectral palmprint images of CASIA database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.