Abstract

We apply a spin-projection method to calculate microscopically the level densities of a family of nickel isotopes $^{59-64}$Ni using the shell model Monte Carlo approach in the complete $pfg_{9/2}$ shell. Accurate ground-state energies of the odd-mass nickel isotopes, required for the determination of excitation energies, are determined using the Green's function method recently introduced to circumvent the odd particle-number sign problem. Our results are in excellent agreement with recent measurements based on proton evaporation spectra and with level counting data at low excitation energies. We also compare our results with neutron resonance data, assuming equilibration of parity and a spin-cutoff model for the spin distribution at the neutron binding energy, and find good agreement with the exception of $^{63}$Ni.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.