Abstract

In this paper I study the dynamics of a two-level atom interacting with a standing wave field. When the atom is subjected to a weak linear force, the problem can be turned into a time dependent one, and the evolution is understood from the band structure of the spectrum. The presence of level crossings in the spectrum gives rise to Bloch oscillations of the atomic motion. Here I investigate the effects of the atom-field detuning parameter. A variety of different level crossings are obtained by changing the magnitude of the detuning, and the behaviour of the atomic motion is strongly affected due to this. I also consider the situation in which the detuning is oscillating in time and its impact on the atomic motion. Wave packet simulations of the full problem are treated numerically and the results are compared with analytical solutions given by the standard Landau-Zener and the three-level Landau-Zener models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.