Abstract

This paper presents a synthesis on the mathematical work done on level crossings of stationary Gaussian processes, with some extensions. The main results [(factorial) moments, representation into the Wiener Chaos, asymptotic results, rate of convergence, local time and number of crossings] are described, as well as the different approaches [normal comparison method, Rice method, Stein-Chen method, a general m-dependent method] used to obtain them; these methods are also very useful in the general context of Gaussian fields. Finally some extensions [time occupation functionals, number of maxima in an interval, process indexed by a bidimensional set] are proposed, illustrating the generality of the methods. A large inventory of papers and books on the subject ends the survey.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.