Abstract

In the regular spectrum of an f -dimensional system each energy level can be labelled with f quantum numbers originating in f constants of the classical motion. Levels with very different quantum numbers can have similar energies. We study the classical limit of the distribution P(S) of spacings between adjacent levels, using a scaling transformation to remove the irrelevant effects of the varying local mean level density. For generic regular systems P(S) = e -s , characteristic of a Poisson process with levels distributed at random. But for systems of harmonic oscillators, which possess the non-generic property that the ‘energy contours’ in action space are flat, P(S) does not exist if the oscillator frequencies are commensurable, and is peaked about a non-zero value of S if the frequencies are incommensurable, indicating some regularity in the level distribution; the precise form of P(S) depends on the arithmetic nature of the irrational frequency ratios. Numerical experiments on simple two-dimensional systems support these theoretical conclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call