Abstract

The levanase gene ( sacC) of Bacillus subtilis is the distal gene of a fructose-inducible operon containing five genes. The complete nucleotide sequence of this operon was determined. The first four genes levD, levE, levF and levG encode polypeptides that are similar to proteins of the mannose phosphotransferase system of Escherichia coli. The levD and levE gene products are homologous to the N and C-terminal part of the enzyme III Man, respectively, whereas the levF and levG gene products have similarities with the enzymes II Man. Surprisingly, the polypeptides encoded by the levD, levE, levF and levG genes are not involved in mannose uptake, but form a fructose phosphotransferase system in B. subtilis. This transport is dependent on the enzyme I of the phosphotransferase system (PTS) and is abolished by deletion of levF or levG and by mutations in either levD or levE. Four regulatory mutations ( sacL) leading to constitutive expression of the levanase operon were mapped using recombination experiments. Three of them were characterized at the molecular level and were located within levD and levE. The levD and levE gene products that form part of a fructose uptake PTS act as negative regulators of the operon. These two gene products may be involved in a PTS-mediated phosphorylation of a regulator, as in the bgl operon of E. coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.