Abstract

A major factor determining aluminium (Al) sensitivity in higher plants is the binding of Al to root cell walls. The Al binding capacity of cell walls is closely linked to the extent of pectin methylesterification, as the presence of methyl groups attached to the pectin backbone reduces the net negative charge of this polymer and hence limits Al binding. Despite recent progress in understanding the molecular basis of Al resistance in a wide range of plants, it is not well understood how the methylation status of pectin is mediated in response to Al stress. Here we show in Arabidopsis that mutants lacking the gene LEUNIG_HOMOLOG (LUH), a member of the Groucho-like family of transcriptional co-repressor, are less sensitive to Al-mediated repression of root growth. This phenotype is correlated with increased levels of methylated pectin in the cell walls of luh roots as well as altered expression of cell wall-related genes. Among the LUH-repressed genes, PECTIN METHYLESTERASE46 (PME46) was identified as reducing Al binding to cell walls and hence alleviating Al-induced root growth inhibition by decreasing PME enzyme activity. seuss-like2 (slk2) mutants responded to Al in a similar way as luh mutants suggesting that a LUH-SLK2 complex represses the expression of PME46. The data are integrated into a model in which it is proposed that PME46 is a major inhibitor of pectin methylesterase activity within root cell walls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.