Abstract

BackgroundLeukotriene receptor antagonists (LTRAs) alleviate Alzheimer’s disease (AD) pathology and improve cognition in animal models; however, clinical evidence is limited. This study aimed to explore the associations between the use of LTRAs (montelukast or zafirlukast) and cognitive performance in people with normal cognition, mild cognitive impairment (MCI), or AD dementia. We hypothesized that LTRA use would be associated with better cognitive performance over time.MethodsThis longitudinal observational study used data from the National Alzheimer’s Coordinating Center. Within groups of participants with normal cognition, MCI, or AD dementia, LTRA users were matched 1:3 to non-users using propensity score matching. Cognitive domains including immediate and delayed memory (Wechsler Memory Scale Revised-Logical Memory IA and IIA), psychomotor processing speed (Digit Symbol Substitution Test), and language (animal naming, vegetable naming, and Boston Naming Test) were compared between users and non-users in mixed-effects linear or Poisson regression models.ResultsIn AD dementia, LTRA use was associated with a slower decline in psychomotor processing speed, as measured by the Digit Symbol Substitution Test (Β = 1.466 [0.253, 2.678] symbols/year, n = 442), and language, as measured by animal naming (Β = 0.541 [0.215, 0.866] animals/year, n = 566), vegetable naming (B = 0.309 [0.056, 0.561] vegetables/year, n = 565), and the Boston Naming Test (B = 0.529 [0.005, 1.053] items/year, n = 561). Effect sizes were small but persisted after controlling for a 10% false discovery rate. LTRA use was not associated with changes in memory performance in AD, nor was it associated with changes in cognitive performance in people with normal cognition or MCI. In a post hoc analysis, LTRA use was associated with a slower decline in clinical progression in MCI (B = −0.200 [−0.380, −0.019] points/year, n = 800) and AD dementia (B = −0.321 [−0.597, −0.046] points/year, n = 604) as measured by CDR Sum of Boxes.ConclusionsThe use of LTRAs was associated with preserved function in non-amnestic cognitive domains in AD dementia. The role of leukotrienes and their receptors in cognitive decline warrants further investigation and the leukotriene pathway may represent a target for AD treatment.

Highlights

  • Leukotriene receptor antagonists (LTRAs) alleviate Alzheimer’s disease (AD) pathology and improve cognition in animal models; clinical evidence is limited

  • The use of LTRAs was associated with preserved function in non-amnestic cognitive domains in AD dementia

  • In the normal cognition sample, LTRA users (n = 350, median follow-up = 4.08 [1.79, 7.08] years, 86.3% with ≥ 2 observations) and non-users (n = 1050, median followup = 3.98 [1.59, 7.21] years, 85.9% with ≥ 2 observations) were balanced in clinical characteristics that were identified to be of importance except for small imbalances in the use of a rescue inhaler for asthma (SMD = 0.162) and use of a maintenance inhaler for asthma (SMD = 0.115), which were used by a greater proportion of LTRA users

Read more

Summary

Introduction

Leukotriene receptor antagonists (LTRAs) alleviate Alzheimer’s disease (AD) pathology and improve cognition in animal models; clinical evidence is limited. This study aimed to explore the associations between the use of LTRAs (montelukast or zafirlukast) and cognitive performance in people with normal cognition, mild cognitive impairment (MCI), or AD dementia. We hypothesized that LTRA use would be associated with better cognitive performance over time. In AD, proinflammatory responses mediated by leukotrienes have been suggested to modulate amyloid beta formation [3] and tau hyperphosphorylation [4]; repurposing leukotriene receptor antagonists (LTRAs) for AD is being explored [5,6,7,8]. LTRAs including montelukast and zafirlukast are indicated for asthma maintenance and allergic rhinitis. It has been suggested that the pathophysiology of asthma and AD may be linked through activation of eicosanoid pathways which increase leukotriene production [11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call