Abstract

Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that causes hemorrhagic colitis. Under some circumstances, Shiga toxin (Stx) produced within the intestinal tract enters the bloodstream, leading to systemic complications that may cause the potentially fatal hemolytic-uremic syndrome (HUS). Despite STEC human infection is characterized by acute inflammation of the colonic mucosa, little is known regarding the role of proinflammatory mediators like cysteine leukotrienes (cysLTs) in this pathology. Thus, the aim of this work was to analyze whether leukotriene C4 (LTC4) influences STEC pathogenesis in mice. We report that exogenous LTC4 pretreatment severely affected the outcome of STEC gastrointestinal infection. LTC4-pretreated (LTC4+) and STEC-infected (STEC+) mice showed an increased intestinal damage by histological studies, and a decreased survival compared to LTC4-non-pretreated (LTC4−) and STEC+ mice. LTC4+/STEC+ mice that died after the infection displayed neutrophilia and high urea levels, indicating that the cause of death was related to Stx2-toxicity. Despite the differences observed in the survival between LTC4+ and LTC4− mice after STEC infection, both groups showed the same survival after Stx2-intravenous inoculation. In addition, LTC4 pretreatment increased the permeability of mucosal intestinal barrier, as assessed by FITC-dextran absorption experiments. Altogether these results suggest that LTC4 detrimental effect on STEC infection is related to the increased passage of pathogenic factors to the bloodstream.Finally, we showed that STEC infection per se increases the endogenous LTC4 levels in the gut, suggesting that this inflammatory mediator plays a role in the pathogenicity of STEC infection in mice, mainly by disrupting the mucosal epithelial barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call