Abstract
In atopic dermatitis, the concentration in the skin of sphingosylphosphorylcholine (SPC), which is produced from sphingomyelin by sphingomyelin deacylase, is increased. In the present study, we investigated the itch-eliciting activity of SPC and related substances and the mechanisms of SPC action in mice. An intradermal injection of SPC, but not sphingomyelin and sphingosine, induced scratching, an itch-associated response, which was not suppressed by a deficiency in mast cells or the H(1) histamine receptor antagonist terfenadine. The action of SPC was inhibited by the mu-opioid receptor antagonist naltrexone. SPC action also was inhibited by the 5-lipoxygenase inhibitor zileuton and the leukotriene B(4) antagonist ONO-4057, but not by the cyclooxygenase inhibitor indomethacin. Moreover, SPC action was inhibited by the antiallergic agent azelastine, which suppresses the action and production of leukotriene B(4). Administration of SPC to the skin and to primary cultures of keratinocytes increased leukotriene B(4) production. SPC increased intracellular Ca(2+) ion concentration in primary cultures of dorsal root ganglion neurons and keratinocytes. These results suggest that SPC induces itching through a direct action on primary afferents and leukotriene B(4) production of keratinocytes. Sphingomyelin deacylase and SPC receptors may be previously unreported targets for antipruritic drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.