Abstract

The hypothalamus-pituitary-adrenal (HPA) axis and its end product cortisol is a major response mechanism to stress and plays a critical role in many psychiatric disorders. Cushing's disease (CD) serves as a valuable in vivo "hyperexpression" model to elucidate the effect of cortisol on brain function and mental disorders. Changes in brain macroscale properties measured by magnetic resonance imaging (MRI) have been detailed demonstrated, but the biological and molecular mechanisms underlying these changes remain poorly understood. Here we included 25 CD patients and matched 18 healthy controls for assessment, and performed transcriptome sequencing of peripheral blood leukocytes. Weighted gene co-expression network analysis (WGCNA) was performed to construct a co-expression network of the relationships between genes and we identified a significant module and hub gene types associated with neuropsychological phenotype and psychiatric disorder identified in enrichment analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis preliminarily explored the biological functions of these modules. The WGCNA and enrichment analysis indicated that module 3 of blood leukocytes was enriched in broadly expressed genes and was associated with neuropsychological phenotypes and mental diseases enrichment. GO and KEGG enrichment analysis of module 3 identified enrichment in many biological pathways associated with psychiatric disorders. Leukocyte transcriptome of Cushing's disease is enriched in broadly expressed genes and is associated with nerve impairment and psychiatric disorders, which may reflect some changes in the affected brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call