Abstract

Existing research demonstrates the association of shorter leukocyte telomere length with increased risk of age-related health outcomes including cardiovascular diseases. However, the direct causality of these relationships has not been definitively established. Cardiovascular aging at an organ level may be captured using image-derived phenotypes of cardiac anatomy and function. In the current study, we use 2-sample Mendelian randomization to assess the causal link between leukocyte telomere length and 54 cardiac magnetic resonance imaging measures representing structure and function across the 4 cardiac chambers. Genetically predicted shorter leukocyte telomere length was causally linked to smaller ventricular cavity sizes including left ventricular end-systolic volume, left ventricular end-diastolic volume, lower left ventricular mass, and pulmonary artery. The association with left ventricular mass (β =0.217, Pfalse discovery rate=0.016) remained significant after multiple testing adjustment, whereas other associations were attenuated. Our findings support a causal role for shorter leukocyte telomere length and faster cardiac aging, with the most prominent relationship with left ventricular mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call