Abstract
BackgroundFollowing Helicobacter pylori eradication in idiopathic parkinsonism (IP), hypokinesia improved but flexor-rigidity increased. Small intestinal bacterial-overgrowth (SIBO) is a candidate driver of the rigidity: hydrogen-breath-test-positivity is common in IP and case histories suggest that Helicobacter keeps SIBO at bay.MethodsIn a surveillance study, we explore relationships of IP-facets to peripheral immune/inflammatory-activation, in light of presence/absence of Helicobacter infection (urea-breath- and/or stool-antigen-test: positivity confirmed by gastric-biopsy) and hydrogen-breath-test status for SIBO (positivity: >20 ppm increment, 2 consecutive 15-min readings, within 2h of 25G lactulose). We question whether any relationships found between facets and blood leukocyte subset counts stand in patients free from anti-parkinsonian drugs, and are robust enough to defy fluctuations in performance consequent on short t½ therapy.ResultsOf 51 IP-probands, 36 had current or past Helicobacter infection on entry, 25 having undergone successful eradication (median 3.4 years before). Thirty-four were hydrogen-breath-test-positive initially, 42 at sometime (343 tests) during surveillance (2.8 years). Hydrogen-breath-test-positivity was associated inversely with Helicobacter-positivity (OR 0.20 (95% CI 0.04, 0.99), p<0.05).In 38 patients (untreated (17) or on stable long-t½ IP-medication), the higher the natural-killer count, the shorter stride, slower gait and greater flexor-rigidity (by mean 49 (14, 85) mm, 54 (3, 104) mm.s-1, 89 (2, 177) Nm.10-3, per 100 cells.μl-1 increment, p=0.007, 0.04 & 0.04 respectively, adjusted for patient characteristics). T-helper count was inversely associated with flexor-rigidity before (p=0.01) and after adjustment for natural-killer count (-36(-63, -10) Nm.10-3 per 100 cells.μl-1, p=0.007). Neutrophil count was inversely associated with tremor (visual analogue scale, p=0.01). Effect-sizes were independent of IP-medication, and not masked by including 13 patients receiving levodopa (except natural-killer count on flexor-rigidity). Cellular associations held after allowing for potentially confounding effect of hydrogen-breath-test or Helicobacter status. Moreover, additional reduction in stride and speed (68 (24, 112) mm & 103 (38, 168) mm.s-1, each p=0.002) was seen with Helicobacter-positivity. Hydrogen-breath-test-positivity, itself, was associated with higher natural-killer and T-helper counts, lower neutrophils (p=0.005, 0.02 & 0.008).ConclusionWe propose a rigidity-associated subordinate pathway, flagged by a higher natural-killer count, tempered by a higher T-helper, against which Helicobacter protects by keeping SIBO at bay.
Highlights
Following Helicobacter pylori eradication in idiopathic parkinsonism (IP), hypokinesia improved but flexor-rigidity increased
We propose a rigidity-associated subordinate pathway, flagged by a higher natural-killer count, tempered by a higher T-helper, against which Helicobacter protects by keeping Small intestinal bacterial-overgrowth (SIBO) at bay
We explore the relationship between Helicobacter and hydrogen-breath-test status in idiopathic parkinsonism
Summary
Following Helicobacter pylori eradication in idiopathic parkinsonism (IP), hypokinesia improved but flexor-rigidity increased. Small intestinal bacterial-overgrowth (SIBO) is a candidate driver of the rigidity: hydrogenbreath-test-positivity is common in IP and case histories suggest that Helicobacter keeps SIBO at bay. Milestones in elucidating the aetiopathogenesis of Parkinson’s disease have been few and far between. Frequency of defecation deviates from that of controls three decades before median age of diagnosis [2], and infrequent bowel movements are associated with subsequent diagnosis [3]. Morphological and neurochemical changes associated with Parkinson’s disease are found in the enteric nervous system of oesophagus, stomach, duodenum and small- and large-intestine, in coeliac and para-verebral sympathetic ganglia and dorsal vagal nuclei [6,7,8,9,10,11]. This, if replicated in enteric neurones and/or myocytes, and associated with dysfunction [13], may provide a mechanism behind slow gastrointestinal transit
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.