Abstract

Kawasaki disease (KD) is a systemic vasculitis that can lead to severe cardiovascular complications, whereas the development and clinical usage of specific biomarkers might help diagnose KD and avoid certain complications. To this end, the molecular profiles of acute KD patients with coronary artery lesions (CAL) were first investigated through leukocyte proteomics and serum metabolomics assays. A total of 269 differentially abundant proteins and 35 differentially abundant metabolites with the top fold-changed levels were identified in acute KD patients compared to those in the healthy controls. Among them, several highly promising candidate marker proteins and metabolites indicative of KD progression were further analysed, such as the increased proteins ALPL, NAMPT, and S100P, as well as the decreased proteins C1QB and apolipoprotein family members. Moreover, metabolites, including succinic acid, dGMP, hyaluronic acid, L-tryptophan, propionylcarnitine, inosine, and phosphorylcholine, were found to be highly accurate at distinguishing between KD patients and healthy controls. Interestingly, the abnormal expression levels of a distinct set of proteins and metabolites in acute KD patients can be restored to normal levels upon intravenous immunoglobulin (IVIG) treatment. Overall, this work has revealed novel biomarkers and abnormal amino-acid metabolism as a prominent feature involved in KD patients with CAL. SignificanceKD is frequently concomitant with the development of life-threatening coronary vasculitis. Here, the profiles of leukocyte proteomics and serum metabolomics in acute KD patients with CALs were first investigated, and several hub molecules identified here could be used as supplemental biomarkers for KD diagnosis. Moreover, the metabolomic abnormalities especially the amino acids are particularly prominent in KD patients. Interestingly, the abnormal expression levels of a distinct set of proteins and metabolites in acute KD patients can be restored to normal levels upon IVIG treatment. Therefore, these findings might help understand the IVIG activities and also the underlying mechanisms of IVIG-resistant patients, thereby providing a new perspective for the exploration of mechanisms related to KD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call