Abstract
Advances in high-throughput methods have enabled the molecular characterization of leukemias and have improved our understanding of their clonal evolution from leukemogenesis in hematopoietic stem/progenitor cells to overt diagnosable disease. It has now been revealed that during leukemia’s development and progression, genetic alterations accumulate according to the principles of Darwinian evolution. Drug resistance often emerges from changes in evolutionary trajectories of disease through selection of subpopulations that have greater fitness under therapy. In this manuscript, we will review recent data on prevalence of highly branched evolutionary patterns in myeloid and lymphoid leukemias and discuss how different treatment strategies differentially shape leukemia’s clonal architecture. Increasing evidence on clinical impact of small pre-malignant clones prior to diagnosis and small resistant clones during treatment strongly suggests that highly sensitive experimental and mathematical models are necessary for accurate dissection of hematopoietic populations and robust identification of predictive markers for disease transformation and relapse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.