Abstract

BackgroundThe pro-myelinating effects of leukemia inhibitory factor (LIF) and other cytokines of the gp130 family, including oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), have long been known, but controversial results have also been reported. We recently overexpressed erythropoietin receptor (EPOR) in rat central glia-4 (CG4) oligodendrocyte progenitor cells (OPCs) to study the mechanisms mediating the pro-myelinating effects of erythropoietin (EPO). In this study, we investigated the effect of co-treatment with EPO and LIF.MethodsGene expression in undifferentiated and differentiating CG4 cells in response to EPO and LIF was analysed by DNA microarrays and by RT-qPCR. Experiments were performed in biological replicates of N ≥ 4. Functional annotation and biological term enrichment was performed using DAVID (Database for Annotation, Visualization and Integrated Discovery). The gene-gene interaction network was visualised using STRING (Search Tool for the Retrieval of Interacting Genes).ResultsIn CG4 cells treated with 10 ng/ml of EPO and 10 ng/ml of LIF, EPO-induced myelin oligodendrocyte glycoprotein (MOG) expression, measured at day 3 of differentiation, was inhibited ≥4-fold (N = 5, P < 0.001). Inhibition of EPO-induced MOG was also observed with OSM and CNTF. Analysis of the gene expression profile of CG4 differentiating cells treated for 20 h with EPO and LIF revealed LIF inhibition of EPO-induced genes involved in lipid transport and metabolism, previously identified as positive regulators of myelination in this system. In addition, among the genes induced by LIF, and not by differentiation or by EPO, the role of suppressor of cytokine signaling 3 (SOCS3) and toll like receptor 2 (TLR2) as negative regulators of myelination was further explored. LIF-induced SOCS3 was associated with MOG inhibition; Pam3, an agonist of TLR2, inhibited EPO-induced MOG expression, suggesting that TLR2 is functional and its activation decreases myelination.ConclusionsCytokines of the gp130 family may have negative effects on myelination, depending on the cytokine environment.

Highlights

  • The pro-myelinating effects of leukemia inhibitory factor (LIF) and other cytokines of the gp130 family, including oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), have long been known, but controversial results have been reported

  • central glia-4 (CG4) cells were differentiated for 3 days in differentiation-promoting medium (DM) with or without increasing concentrations of LIF ranging from 0.004 to 10 ng/ml

  • Since EPO at high doses still increased myelin oligodendrocyte glycoprotein (MOG) expression in these cells, as mentioned above and reported in a previous study (Cervellini et al, 2013), whereas LIF was less effective at high dose (10 ng/ ml) than at low dose (0.2 ng/ml; Fig. 1a), these results suggest the LIF might induce a negative feedback that inhibits both its own and EPO’s pro-myelinating effects

Read more

Summary

Introduction

The pro-myelinating effects of leukemia inhibitory factor (LIF) and other cytokines of the gp130 family, including oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), have long been known, but controversial results have been reported. We recently overexpressed erythropoietin receptor (EPOR) in rat central glia-4 (CG4) oligodendrocyte progenitor cells (OPCs) to study the mechanisms mediating the pro-myelinating effects of erythropoietin (EPO). In chronic inflammatory diseases, such as multiple sclerosis (MS), damage to OLs causes demyelination, impairs axonal function and leads to progressive degeneration of axons (Franklin & Gallo, 2014; Tauheed et al, 2016). Remyelination, the process by which OL progenitor cells (OPCs) differentiate and mature to produce myelin that wraps demyelinated axons, can occur in the adult brain, where a wide-spread population of OPCs is present. Since OPCs are present in adult aging brain and in MS lesions, a block in differentiation and not a lack of OPCs seems responsible for remyelination failure (Franklin & Gallo, 2014; Kremer et al, 2015; Chamberlain et al, 2016)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call