Abstract

Osteoblasts and adipocytes derive from a common mesenchymal precursor, and in at least some circumstances, differentiation along these two lineages is inversely related. For example, we have recently observed that concomitant with inhibition of osteoblast differentiation and bone nodule formation, leukemia inhibitory factor (LIF) induces genes regulating lipid metabolism in fetal rat calvaria (RC) cell cultures. In this study, we further investigated the adipogenic capacity of LIF-treated RC cells. Quantitative analyses revealed that LIF increased the adipocyte differentiation induced by the peroxisome proliferator-activated receptor gamma agonist BRL49653 (BRL) in RC cell populations. Gene expression profiling of individual RC cell colonies in untreated cells or cells treated with LIF, BRL, or combined LIF-BRL suggested that some adipocytes arose from bipotential or other primitive precursors, including osteoprogenitors, since many colonies co-expressed osteoblast and adipocyte differentiation markers, whereas some arose from other cell pools, most likely committed preadipocytes present in the population. These analyses further suggested that LIF and BRL do not act at the same stages of the mesenchymal hierarchy, but rather that LIF modifies differentiation of precursor cells, whereas BRL acts later to favor adipocyte differentiation. Taken together, our data suggest that LIF increased adipocyte differentiation at least in part by altering the fate of osteoblastic cells and their precursors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.