Abstract

The lethal electric field (LEF) thresholds for three typical cerebral cells, including a malignant glioblastoma (GBM) cell line and two cell lines from the healthy blood-brain barrier (BBB), treated by irreversible electroporation (IRE) or high-frequency irreversible electroporation (H-FIRE) protocols were investigated in an in vitro three-dimensional (3D) cell model. A conventional IRE protocol (90 pulses, 1 Hz, and 100-μs pulse duration) and three novel H-FIRE protocols (1-3-1, 0.5-1-0.5, and 1-1-1) were used to treat the cerebral cells in both 3D single-cell and two-cell models. The electrical conductivity of the 3D cell model under different electric field strengths were characterized with the method of electrochemical impedance spectroscopy (EIS). Based on EIS, a numerical electrothermal model of electroporation was built for the determination of the LEF threshold with different protocols and temperature monitoring. Cell viability was assessed by fluorescence staining 6 h after the treatment. The results showed no thermal lethal effect on cells when these protocols were used. The LEF threshold for GBM cells was significantly lower than that of the healthy BBB cells. These results suggest the possibility of selective ablation of human cerebral GBM by IRE and H-FIRE treatments with no injury or reversible injury to healthy cells, and the potential use of IRE or H-FIRE for transient disruption of the BBB to allow chemotherapy to reach the tumor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call