Abstract
Pollinator decline worldwide is well-documented; globally, chemical pesticides (especially the class of pesticides known as neonicotinoids) have been implicated in hymenopteran decline, but the mechanics and drivers of population trends and dynamics of wild bees is poorly understood. Declines and shifts in community composition of bumble bees (Bombus spp.) have been documented in North America and Europe, with a suite of lethal and sub-lethal effects of pesticides on bumble bee populations documented. We employ a mathematical model parameterized with values taken from the literature that uses differential equations to track bumble bee populations through time in order to attain a better understanding of toxicant effects on a developing colony of bumble bees. We use a delay differential equation (DDE) model, which requires fewer parameter estimations than agent-based models while affording us the ability to explicitly describe the effect of larval incubation and colony history on population outcomes. We explore how both lethal and sublethal effects such as reduced foraging ability may combine to affect population outcomes, and discuss the implications for the protection and conservation of ecosystem services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.