Abstract

In previous studies, the two closely related strains of L5178Y (LY) mouse lymphoma cells, LY-R and LY-S, have been shown to differ in their sensitivity to UV and ionizing radiation. Thus, in comparison to strain LY-R, strain LY-S has been found to be more sensitive to the lethal effects of ionizing radiation, more resistant to the lethal effects of UV radiation, but less mutable at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus by both UV and X-radiation. In the present work, the lethal and mutagenic effects of ethyl methanesulfonate (EMS), methyl nitrosourea (MNU) and UV radiation (254 nm) were compared in the tow strains. Mutability at the Na +/K +-ATPase locus as well as the HGPRT locus was determined. As previously reported, we found strain LY-S to be more resistant than strain LY-R to the lethal effects of UV radiation. In contrast, strain LY-S was more sensitive to the cytotoxic effects of the two alkylating agents. In spite of these differences in sensitivity, we found strain LY-S to be less mutable than strain LY-R by all 3 agents at the HGPRT locus. At the Na +/K +-ATPase locus, strain LY-S was also less mutable than strain LY-R by equal concentrations of EMS and UV radiation and by equitoxic concentrations of MNU. However, the difference between the strains was much more pronounced at the HGPRT locus than at the Na +/K +-ATPase locus. We have suggested that the interaction of unrepaired lesions in strain LY-S tends to cause an excess of deletions and multilocus effects, which in turn result in a locus-dependent decrease in the recovery of viable LY-S mutant cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call