Abstract

Over the past decades, optical technologies have entered neural implant technologies. Applications such as optogenetics, near-infrared spectroscopy (NIRS), and direct-near-infrared stimulation (NIS) request technical devices that combine electrical and optical recording as well as stimulation capabilities using light sources and/or optical sensors. Optoprobes are the technical devices that meet these requirements. This paper provides basic insights into optogenetic mechanisms, the background of NIRS and NIS, and focuses on fundamental requirements of technical systems from a biological background. The state of the art of optoprobes is reviewed and attention is drawn on the potential long-term stability of these technical devices for chronic neural implants. Further, material selection for stiff and flexible devices, applicable light sources, waveguide and coupling concepts, packaging paradigms as well as system assembly and integration aspects are discussed in view of biocompatible and biostable devices. This paper also considers the physical background of light scattering and heat generation when light sources are implanted into biological tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.