Abstract

Multiple myeloma (MM) is the most common cause of death from hematological malignancy worldwide, and recent studies have revealed that let-7b-5p can play an inhibitory role in tumorigenesis. However, the role of let-7b-5p in MM still remains unclear. The aim of this study was to elucidate the molecular mechanisms by which let-7b-5p acts as a tumor suppressor in MM. Here, quantitative real-time polymerase chain reaction results showed that the expression of let-7b-5p was remarkably reduced in MM tissues and MM cell lines (RPMI-8226 and U266 cells). Furthermore, over-expression of let-7b-5p significantly suppressed RPMI-8226 cell proliferation and induced S/G2 cell cycle arrest and apoptosis. Luciferase reporter assay results demonstrated that insulin-like growth factor receptor 1 (IGF1R) was negatively regulated by let-7b-5p at the post-transcriptional level. The mRNA and protein levels of IGF1R in RPMI-8226 cells were down-regulated by let-7b-5p. Furthermore, the cell phenotype altered by let-7b-5p inhibitor can be rescued by IGF1R silencing (si-IGF1R). Taken together, our results demonstrated that let-7b-5p functions as a tumor suppressor in MM, suggesting that let-7b-5p may be a potential therapeutic target for MM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.