Abstract

One-way, dataflow constraints are commonly used in graphical interface toolkits, programming environments, and circuit applications. Previous papers on dataflow constraints have focused on the design and implementation of individual algorithms. In contrast, this article focuses on the lessons we have learned from a decade of implementing competing algorithms in the Garnet and Amulet graphical interface toolkits. These lessons reveal the design and implementation tradeoffs for different one-way, constraint satisfaction algorithms. The most important lessons we have learned are that (1) mark-sweep algorithms are more efficient than topological ordering algorithms; (2) lazy and eager evaluators deliver roughly comparable performance for most applications; and (3) constraint satisfaction algorithms have more than adequate speed, except that the storage required by these algorithms can be problematic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.