Abstract

C. tyrobutyricum, an acidogenic Clostridium, has aroused increasing interest due to its potential to produce biofuel efficiently. However, construction of recombinant C. tyrobutyricum for enhanced biofuel production has been impeded by the limited genetic engineering tools. In this study, a flavin mononucleotide (FMN)-dependent fluorescent protein Bs2-based gene expression reporter system was developed to monitor transformation and explore in vivo strength and regulation of various promoters in C. tyrobutyricum and C. acetobutylicum. Unlike green fluorescent protein (GFP) and its variants, Bs2 can emit green light without oxygen, which makes it extremely suitable for promoter screening and transformation confirmation in organisms grown anaerobically. The expression levels of bs2 under thiolase promoters from C. tyrobutyricum and C. acetobutylicum were measured and compared based on fluorescence intensities. The capacities of the two promoters in driving secondary alcohol dehydrogenase (adh) gene for isopropanol production in C. tyrobutyricum were distinguished, confirming that this reporter system is a convenient, effective and reliable tool for promoter strength assay and real time monitoring in C. tyrobutyricum, while demonstrating the feasibility of producing isopropanol in C. tyrobutyricum for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call