Abstract

Virology Human cells contain tens of thousands of protein-encoding genes that are transcribed into a much larger numbers of mRNAs. Viruses, on the other hand, are far simpler, carrying with them only a handful of genes and proteins, yet they have developed countless ways of hijacking specific host cellular functions for their own benefit. Discovering these survival mechanisms often offers fascinating insights into normal host cell biology. Eukaryotes use sophisticated ways of regulating gene expression, including polyadenylating the 3′ end of mRNAs to enhance their stability for eventual translation into protein, and possibly also to promote mRNA degradation. Some herpesviruses, including Kaposi's sarcoma–associated herpesvirus (KSHV), manipulate host cells by promoting the widespread destruction of cellular mRNAs. KSHV achieves this via its Sox protein, and Lee and Glaunsinger show that human cells expressing the viral Sox protein contain mRNAs with unusually long poly(A) tails (hyperadenylation), which was mediated by the host enzyme poly(A) polymerase II. This effect of viral Sox was linked to its ability to accelerate mRNA turnover, suggesting that the virus induces host mRNA degradation by modulating poly(A) length. PLoS Biol . 7 , e1000107 (2009).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.