Abstract

What is the topic of this review? The long-held assumption that transcranial Doppler middle cerebral artery velocity is a surrogate for cerebral blood flow has been questioned in certain circumstances, particularly where tissue oxygenation changes. What advances does it highlight? Cerebral venous outflow restriction appears to be implicated in the development of high-altitude cerebral oedema. Rapid ascent to high altitude commonly results in acute mountain sickness and, on occasion, potentially fatal high-altitude cerebral oedema. The exact pathophysiological mechanisms behind these syndromes remain to be determined. One of the main theories to explain the development of acute mountain sickness is an increase in intracranial pressure. Vasogenic (extracellular water accumulation attributable to increased permeability of the blood-brain barrier) and cytotoxic (intracellular) oedema have also been postulated as potential mechanisms that underlie high-altitude cerebral oedema. Recently published findings derived from a very challenging field study (obtained at altitudes of up to 7950m), substantiated by sea-level hypoxic magnetic resonance angiography studies, have given new insights into the maintenance of cerebral blood flow at altitude. This report provides new perspectives and potential mechanisms to account for the maintenance of cerebral oxygen delivery at high and extreme altitude. In particular, the long-held assumption that transcranial Doppler middle cerebral artery velocity is a surrogate for cerebral blood flow has been shown to be incorrect in certain circumstances. The emerging evidence for a potential third mechanism, namely the restrictive venous outflow hypothesis, in the development of high-altitude cerebral oedema, over and above the accepted vasogenic and cytotoxic hypotheses, is also appraised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.