Abstract

The skeleton-forming cells of sea urchins and other echinoderms have been studied by developmental biologists as models of cell specification and morphogenesis for many decades. The gene regulatory network (GRN) deployed in the embryonic skeletogenic cells of euechinoid sea urchins is one of the best understood in any developing animal. Recent comparative studies have leveraged the information contained in this GRN, bringing renewed attention to the diverse patterns of skeletogenesis within the phylum and the evolutionary basis for this diversity. The homeodomain-containing transcription factor, Alx1, was originally shown to be a core component of the skeletogenic GRN of the sea urchin embryo. Alx1 has since been found to be key regulator of skeletal cell identity throughout the phylum. As such, Alx1 is currently serving as a lens through which multiple developmental processes are being investigated. These include not only GRN organization and evolution, but also cell reprogramming, cell type evolution, and the gene regulatory control of morphogenesis. This review summarizes our current state of knowledge concerning Alx1 and highlights the insights it is yielding into these important developmental and evolutionary processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.