Abstract

In 1976 Frank Evison identified the first examples of earthquake swarms as long-term precursors of main-shock events, and thereby discovered the predictive scaling relations of long-term seismogenesis. From this time on, forecasting became the main focus of his research. After learning from an early attempt to communicate forecasts confidentially to government, he recognised the importance of hypothesis testing, and the precursory swarm hypothesis was cast in a form similar to a regional likelihood model. Tests of its performance relative to a stationary Poisson model at M ≥ 5.8 in New Zealand were begun in 1977. The initial hypothesis was that of a 1–1 relation between swarms and main-shock events. Following a study of the Japan catalogue, the generalised swarm hypothesis, in which multiple swarms were precursory to multiple main-shock events, was formulated. Tests of this form of the hypothesis at M ≥ 6.8 were initiated in a region of surveillance east of Japan in 1983. Eventually the generalised hypothesis was adopted in New Zealand also. In 1999, tests were begun in a region of Greece. In 1994–1995, several main-shock events favourable to the swarm hypothesis occurred, however four main-shock events near Arthur’s Pass, New Zealand, occurred without precursory swarms. Subsequent analysis showed that events called “quarms”, which were similar to swarms but more protracted in time, had preceded these events. This led to the proposal of a qualitative physical process to account for swarms, quarms and the predictive relations: A three-stage faulting process, in which a major crack induces aftercracks in its neighbourhood, just as a main shock induces aftershocks. An inference from this process was that the most general long-term precursor should be an increase of seismicity at similar magnitudes to the eventual aftershocks. It turned out that such a precursory scale increase nearly always occurs before major earthquakes and conforms to the predictive scaling relations. Setting aside the problem of identifying the scale increase before the major earthquake, the EEPAS (Every Earthquake a Precursor According to Scale) forecasting model was formulated. The success of this relatively weak model in forecasting major events in New Zealand, California, Japan and Greece shows that the predictive scaling relations are ubiquitous in earthquake catalogues. Although none of the formal tests of the swarm hypothesis were successful in their own terms, they were beneficial in identifying shortcomings in its formulation, thereby leading to improved understanding of long-term seismogenesis and a better forecasting model. Some puzzling aspects of the scaling relations are whether they vary regionally, and why the precursor area and aftershock area scale differently with magnitude. A more practical question is whether the EEPAS model can be strengthened, by making use of the clustering of some precursors in swarms and quarms, to bring us nearer to the original goal of forecasting individual major earthquakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.