Abstract

BackgroundAlthough minimally invasive approaches are widely used in many areas of orthopedic surgery nonunion therapy remains a domain of open surgery. Some attempts have been made to introduce minimally invasive procedures into nonunion therapy. However, these proof of concept studies showed fusion rates comparable to open approaches never gaining wider acceptance in the clinical community. We hypothesize that knowledge of mechanically relevant regions of a nonunion might reduce the complexity of percutaneous procedures, especially in complex fracture patterns, and further reduce the amount of cancellous bone that needs to be transplanted. The aim of this investigation is to provide a proof of concept concerning the hypothesis that mechanically stable fusion of a nonunion can be achieved with less than full circumferential fusion.MethodsCT data of an artificial tibia with a complex fracture pattern and anatomical LCP are converted into a finite element mesh. The nonunion area is segmented. The finite element mesh is assigned mechanical properties according to data from the literature. An optimization algorithm is developed that reduces the number of voxels in the non union area until the scaled von Mises stress in the implant reaches 20% of the maximum stress in the implant/bone system that occurs with no fusion in the nonunion area at all.ResultsAfter six iterations of the optimization algorithm the number of voxels in the nonunion area is reduced by 96.4%, i.e. only 3.6% of voxels in the non union area are relevant for load transfer such that the von Mises stress in the implant/bone system does not exceed 20% of the maximal scaled von Mises stress occurring in the system with no fusion in the non union area at all.ConclusionsThe hypothesis that less than full circumferential fusion is necessary for mechanical stability of a nonunion is confirmed. As the model provides only qualitative information the observed reduction of fusion area may not be taken literally but needs to be calibrated in future experiments. However this proof of concept provides the mechanical foundation for further development of minimally invasive approaches to delayed union and nonunion therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2474-15-434) contains supplementary material, which is available to authorized users.

Highlights

  • Minimally invasive approaches are widely used in many areas of orthopedic surgery nonunion therapy remains a domain of open surgery

  • In orthopedic trauma surgery it has decreased the damage to soft tissues, minimized scaring, reduced postoperative pain and improved recovery time. These aims have basically been reached by reducing the invasiveness of the instruments and surgical techniques, e.g. minimally invasive plate osteosynthesis (MIPO) or percutaneous pedicle screw instrumentation in spine surgery

  • After each simulation the fusion area in the fracture is reduced incrementally until a predefined stop criterion (Table 1), i.e. 20% of the maximum von Mises stress arising in the current step of the algorithm is reached

Read more

Summary

Introduction

Minimally invasive approaches are widely used in many areas of orthopedic surgery nonunion therapy remains a domain of open surgery. Some attempts have been made to introduce minimally invasive procedures into nonunion therapy These proof of concept studies showed fusion rates comparable to open approaches never gaining wider acceptance in the clinical community. In nonunion therapy open resection and autologous cancellous bone transplantation, which is a highly invasive in terms of disturbance of local vascularity has become the gold standard approach. In this field too several attempts to reduce the invasiveness of the procedure have been made. I.e. union, non differences were found, while the percutaneous group was significantly better in terms of operation time and blood loss

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call