Abstract

A proper edge coloring of a graph 𝐺 is strong if the union of any two color classes does not contain a path with three edges (i.e. the color classes are induced matchings). The strong chromatic index 𝑞(𝐺) is the smallest number of colors needed for a strong coloring of 𝐺. One form of the famous (6, 3)-theorem of Ruzsa and Szemerédi (solving the (6, 3)-conjecture of Brown–Erdős–Sós) states that 𝑞(𝐺) cannot be linear in 𝑛 for a graph 𝐺 with 𝑛 vertices and 𝑐𝑛2 edges. Here we study two refinements of 𝑞(𝐺) arising from the analogous (7, 4)-conjecture. The first is 𝑞𝐴(𝐺), the smallest number of colors needed for a proper edge coloring of 𝐺 such that the union of any two color classes does not contain a path or cycle with four edges, we call it an A-coloring. The second is 𝑞𝐵(𝐺), the smallest number of colors needed for a proper edge coloring of 𝐺 such that all four-cycles are colored with four different colors, we call it a B-coloring. These notions lead to two stronger and one equivalent form of the (7, 4)-conjecture in terms of 𝑞𝐴(𝐺), 𝑞𝐵(𝐺) where 𝐺 is a balanced bipartite graph. Since these are questions about graphs, perhaps they will be easier to handle than the original special(7, 4)-conjecture. In order to understand the behavior of 𝑞𝐴(𝐺) and 𝑞𝐵(𝐺), we study these parameters for some graphs.We note that 𝑞𝐴(𝐺) has already been extensively studied from various motivations. However, as far as we know the behavior of 𝑞𝐵(𝐺) is studied here for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call