Abstract
Abstract In this paper, we conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDialog curated by ourselves. The current models indeed suffer from spurious correlations and have a tendency to generate irrelevant and generic responses. Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference using a conditional independence classifier. The classifier is trained by a constrained self-training method, coined ConSTrain, to overcome data sparsity. The experimental results based on both human and automatic evaluation show that our method significantly outperforms the competitive baselines in terms of relevance, informativeness, and fluency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Association for Computational Linguistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.