Abstract

We investigate optical second-harmonic generation (SHG) from metasurfaces where noncentrosymmetric V-shaped gold nanoparticles are ordered into regular array configurations. In contrast to expectations, a substantial enhancement of the SHG signal is observed when the number density of the particles in the array is reduced. More specifically, by halving the number density, we obtain over 5-fold enhancement in SHG intensity. This striking result is attributed to favorable interparticle interactions mediated by the lattice, where surface-lattice resonances lead to spectral narrowing of the plasmon resonances. Importantly, however, the results cannot be explained by the improved quality of the plasmon resonance alone. Instead, the lattice interactions also lead to further enhancement of the local fields at the particles. The experimental observations agree very well with results obtained from numerical simulations including lattice interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.