Abstract
Purpose: The purpose of this article was to (i) compare different modes of feedback (multiple vs. single) on 30 min cycling time-trial performance in non-cyclist’s and cyclists-triathletes, and (ii) investigate cyclists-triathlete’s information acquisition.Methods: 20 participants (10 non-cyclists, 10 cyclists-triathletes) performed two 30 min self-paced cycling time-trials (TT, ∼5–7 days apart) with either a single feedback (elapsed time) or multiple feedback (power output, elapsed distance, elapsed time, cadence, speed, and heart rate). Cyclists-triathlete’s information acquisition was also monitored during the multiple feedback trial via an eye tracker. Perceptual measurements of task motivation, ratings of perceived exertion (RPE) and affect were collected every 5 min. Performance variables (power output, cadence, distance, speed) and heart rate were recorded continuously.Results: Cyclists-triathletes average power output was greater compared to non-cyclists with both multiple feedback (227.99 ± 42.02 W; 137.27 ± 27.63 W; P < 0.05) and single feedback (287.9 ± 60.07 W; 131.13 ± 25.53 W). Non-cyclist’s performance did not differ between multiple and single feedback (p > 0.05). Whereas, cyclists-triathletes 30 min cycling time-trial performance was impaired with multiple feedback (227.99 ± 42.02 W) compared to single feedback (287.9 ± 60.07 W; p < 0.05), despite adopting and reporting a similar pacing strategy and perceptual responses (p > 0.05). Cyclists-triathlete’s primary and secondary objects of regard were power (64.95 s) and elapsed time (64.46 s). However, total glance time during multiple feedback decreased from the first 5 min (75.67 s) to the last 5 min (22.34 s).Conclusion: Cyclists-triathletes indoor 30 min cycling TT performance was impaired with multiple feedback compared to single feedback. Whereas non-cyclist’s performance did not differ between multiple and single feedback. Cyclists-triathletes glanced at power and time which corresponds with the wireless sensor networks they use during training. However, total glance time during multiple feedback decreased over time, and therefore, overloading athletes with feedback may decrease performance in cyclists-triathletes.
Highlights
Cycling events range from 2 min to > 6 h depending on the discipline (Hutchinson, 2017)
The cyclists-triathlete’s 30 min cycling time-trial performance was impaired with multiple feedback compared to single feedback (P < 0.05; Figure 2)
Experienced cyclists indoor 30 min cycling TT performance was impaired with multiple feedback compared to single feedback
Summary
Cycling events range from 2 min to > 6 h depending on the discipline (Hutchinson, 2017). Previous research has shown a change in pacing pattern (e.g., stride or gait velocity) when two tasks were performed simultaneously compared to separate task execution (Beauchet et al, 2005; Beurskens and Bock, 2012; Bradford et al, 2019) In tasks such as prolonged cycling, athletes experience neuromuscular fatigue originating from both central (i.e., spinal or supraspinal) and peripheral sites (i.e., within the muscle), which will eventually lead to a reduction in work rate (Chatain et al, 2019). By using a self-paced model, it may be possible to clearly identify overload (i.e., increase mental/physical load) experienced by the athlete as they will be forced to choose which task to allocate more attentional resources to for successful completion (Chatain et al, 2019) This would be useful for cycling performance analysis as cyclists frequently use multiple types of feedback (i.e., power meters, cadence sensors, heart rate monitors) simultaneously during training and competition. Posing the question as to whether using single feedback (i.e., power only, cadence only) may offer greater cycling performance outcomes compared to multiple feedback as there is less chance of developing a cognitive overload
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.